One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes

2014 
Abstract Graphene with extraordinary thermal, mechanical and electrical properties offers possibilities in a variety of applications. Recent advances in the synthesis of graphene composites using supercritical fluids are highlighted. Supercritical fluids exhibit unique features for the synthesis of composites due to its low viscosity, high diffusivity, near-zero surface tension, and tunability. Here, we report the preparation of tin dioxide (SnO 2 )/graphene nanocomposite through supercritical CO 2 method. It demonstrates that the SnO 2 nanoparticles are homogeneously dispersed on the surface of graphene sheets with a particle size of 2.3–2.6 nm. The SnO 2 /graphene nanocomposites exhibit higher lithium storage capacity and better cycling performance compared to that of the similar CNT nanocomposites. The reported synthetic procedure is straightforward, green and inexpensive. And it may be readily adopted to produce large quantities of graphene based nanocomposites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    10
    Citations
    NaN
    KQI
    []