The N‐terminal cellulose‐binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates

2008 
A full-length EGXA enzyme from a mollusk, Ampullaria crossean, was cloned into pFastBac vector and then heterogeneously expressed in insect Tn5 cells. Its natural N-terminal signal peptide worked well in the insect Tn5 cells. The recombinant EGXA was a 63 kDa protein and had active endo-β-1,4-glucanase (EC 3.2.1.4) and endo-β-1,4-xylanase (EC 3.2.1.8). The specific activity of endo-β-1,4-xylanase was higher than in the EGX, which was purified from the stomach tissues of Ampullaria crossen. The N-terminal cellulosebinding domain of EGXA made it bind to cellulose and xylan more efficiently. This cellulose-binding domain also increased the thermal stability of this recombinant enzyme and decreased the recombinant EGXA’s specific activities on p-nitrophenyl-β-D-cellobioside and sodium carboxymethyl cellulose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    11
    Citations
    NaN
    KQI
    []