Development and validation of quantitative analytical method for 50 drugs of antidepressants, benzodiazepines and opioids in oral fluid samples by liquid chromatography–tandem mass spectrometry

2021 
We developed and validated a method for quantitative analysis of 50 psychoactive substances and metabolites (antidepressants, benzodiazepines and opioids) in oral fluid samples using simple liquid–liquid extraction procedure followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Oral fluid samples were collected using Quantisal™ device and extracted by liquid–liquid extraction with 1.0 mL of methyl tert-butyl ether and then analyzed using LC–MS/MS. The method attended method validation criteria, with limits of quantification as low as 0.5 and 1.0 ng/mL, and linearity between 0.5–50.0 ng/mL for antidepressants, 0.5–25.0 ng/mL for benzodiazepines and 1.0–50.0 ng/mL to opioids. During method validation, bias and imprecision values were not greater than 16 and 20%, respectively. Ionization suppression/enhancement bias results were not greater than 25%. No evidence of carryover was observed. Sample stability studies showed that almost all analytes were stable at 25 °C for 3 days and at 4 °C for 7 days. Freeze–thaw cycles stability showed that most antidepressants and opioids were stable under these conditions. Autosampler stability study showed that all analytes were stable for 24 h, except for nitrazepam and 7-aminoclonazepam. Thirty-eight authentic oral fluid samples were analyzed; 36.8% of the samples were positive for 2 drugs. Citalopram was the most common drug found, followed by venlafaxine. The method was validated according to international recommendations for the 50 analytes, showing low limits of quantification, good imprecision and bias values, using simple liquid–liquid extraction, and was successfully applied to authentic oral fluid samples analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    2
    Citations
    NaN
    KQI
    []