Continuous gradient temperature Raman spectroscopy of N-6DPA and DHA from -100 to 20°C.

2016 
Abstract One of the great unanswered questions with respect to biological science in general is the absolute necessity of docosahexaenoic acid (DHA, 22:6n-3) in fast signal processing tissues. N-6 docosapentaenoic acid (n-6DPA, 22:5n-6), with just one less double bond, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DSC to n-6DPA and DHA from −100 to 20 °C. 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. N-6DPA and DHA show significant spectral changes with premelting (−33 and −60 °C, respectively) and melting (−27 and −44 °C, respectively). The CH2 (HC CH) CH2 moieties are not identical in the second half of the DHA and DPA structures. DPA has bending (1450 cm −1 ) over almost the entire temperature range. In contrast, DHA contains major CH 2 twisting (1265 cm −1 ) with no noticeable CH 2 bending, consistent with a flat helical structure with a small pitch. Further modeling of neuronal membrane phospholipids must take into account torsion present in the DHA structure, which essential in determining whether the lipid chain is configured more parallel or perpendicular to the hydrophilic head group.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    12
    Citations
    NaN
    KQI
    []