Probing of molecular adsorbates on Au surfaces with large-amplitude temperature jumps

2013 
Methods are described to probe vibrational transitions of molecules adsorbed on Au films subjected to calibrated ultrafast large-amplitude temperature jumps (T-jumps). The probe technique, vibrational sum-frequency generation (SFG), can monitor vibrations localized on specific parts of adsorbate molecules in the form of self-assembled monolayers (SAMs). Substrates had a thin Cr adhesion layer and an Au film that could withstand millions of T-jumps without laser damage of film or adsorbate. The substrate flash-heating process was characterized using ultrafast reflectance measurements. Reflectance transients induced by both 800 nm or 400 nm femtosecond pulses had overshoot-decay-plateau structures. The overshoots and decays represented optically generated hot electrons, and the plateaus gave the equilibrium temperature increase ΔT, which was in the 30–175 K range. The combination of SFG adsorbate and Au surface reflectance measurements was used to assess the effects of adsorbate vibrational heating by both ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    9
    Citations
    NaN
    KQI
    []