Heavy Ion Beams for Investigation of Thermophysical Properties

2010 
Perspectives for study of thermophysical properties via uniform quasi-stationary volumetric heating under Heavy Ion Beam (HIB) heating with moderate but realistic energy deposition (~ 1 kJ/g) are under discussion. New quasi-isobaric regime of heating is proposed as combination of the HIB energy deposition with the use of highly dispersed porous material as an irradiating sample. Regime of "tracing saturation curve" is proposed also when heating the evaporating porous materials. Consequent preferences and priorities are emphasized. In frames of this technique HIB could became an uncompetitive tool for study of phase transition phenomenon for a wide number of materials with high-temperature location of critical point. Two important thermophysical problems, which could approve using of HIB facility, are discussed as the first-row candidates. Evaporation in Uranium is one of the most tempting candidates to be studied under HIB heating in such manner. When being successful this experiment has a good chance to resolve the old contradiction within the problem of Uranium critical point parameters estimations. The heating by HIB seems to be especially promising as an effective tool for systematic study of so-called "non-congruent" phase transition -- striking and mostly unusual sort of high-temperature phase equilibrium in chemically active strongly coupled plasmas. Phase transition in uranium dioxide is remarkable example of such non-congruency. New information on the thermophysical properties of phase transitions in uranium and uranium dioxide could be valuable for application in nuclear reactor safety analysis
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []