Parametric Study of Cyclic Plasticity Behavior in a Directionally Solidified Superalloy with Partial Recrystallization by Crystal Plasticity Finite Element Simulation

2019 
To understand the influence of recrystallization on the low-cycle fatigue behavior of directionally solidified nickel-based DZ4 superalloy, crystal plasticity-based finite element (CPFE) analysis was carried out to study the cyclic plastic behaviors. Using the design of experiments (DOE) technique, a series of CPFE simulations were designed and performed for DZ4 superalloy with recrystallized grains to examine the cyclic plastic shear deformation at the carbide/matrix interface, at the recrystallized grain boundary/matrix, and in the matrix. Seven influence factors, i.e., applied strain, strain ratio, carbide modulus, dwell time, misorientation angle, carbide aspect ratio, and carbide size, were considered, and the effects of which were quantitatively evaluated by the maximum accumulated plastic shear strains via CPFE-based DOE analysis. The results showed that carbide and recrystallized grain boundary had competitively significant effects on fatigue crack initiation. Applied strain was the most influential parameter among all the studied parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    8
    Citations
    NaN
    KQI
    []