Proterozoic massif anorthosites and related rocks in Labrador: the anorthosite-charnockite connection

1985 
Massif anorthosites of Labrador are closely associated in space and time with voluminous, felsic, fayalite- and ferrous pyroxene-bearing igneous rocks. These include charnockites, monzonites, biotite-hornblende granites, and locally syenites. Igneous charnockites form major parts of some of the granitic complexes. In Mistastin batholith for example, charnockitic assemblages comprise about 35% of a total area of 6500 sq. km. Feldspar pairs and coexisting fayalite-opx-qtz in these rocks indicate P and T near 3.5 kb, 750/sup 0/C, assumed to represent near solidus equilibration. Diorites and monzonites intruded by charnockite have mesoperthites implying crystallization T>900/sup 0/C presumably recording earlier stages of crystallization. Oxide and silicate assemblages indicate redox conditions between FMQ and WM oxygen buffers and water pressures well below Ptotal. Younger biotite-hornblende granites and quartz syenites lack Ti-mt. but retain fayalite suggesting that magmatic crystallization was largely closed to water and oxygen. Initial Sr isotope ratios in charnockite-granite suites of central labrador support derivation of the magmas largely or entirely from crustal source rocks. Compositions of mafic silicates and plagioclase, associated Fe-Ti oxide concentrations, trace elements and Sr isotopes in massif anorthosites are in accord with the rocks being crystallization products of substantially fractionated, originally more mafic, mantle magmas. Close association ofmore » high temperature, water-poor, reduced crustal melts is consistent with a fusion process in which heat supply and oxygen buffering were controlled by fractional crystallization of a substantial body of mafic magma subjacent to continental crust.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []