The behavior of chick gastrula mesodermal cells under the unidirectional tractive force parallel to the substrata

1995 
Advancement of leading lamellae of a migratory cell inevitably causes a strain inside the cell body. We investigated the effect of the tension arisen inside a mesodermal cell on its behavior by pulling the cell body unidirectionally along the substratum. Chick gastrula mesodermal cells, known as highly migratory, were dissociated into single cells in sodium citrate buffer, conjugated with paramagnetic beads activated by tosyl-residue (4.5 microns in diameter) and seeded onto coverglasses coated with fibronectin. After the cells spread on the substratum and protruded cellular processes in all directions, they were exposed to a non-uniform magnetic field by a magnet. Thus the cells bearing the beads were pulled with a force in the order of 10(−10) N. The behavior of such cells was recorded with a time-lapse video taperecorder and assessed quantitatively. Shortly after the magnetic force was applied, the beads stuck to the cells were aligned in tandem along the line of magnetic force at the site for the magnet. Subsequently, they frequently came to extend their leading lamella precisely counter to the traction on the line of the beads. Observation with scanning electron microscope revealed that a large part of the beads attached to the cells were wrapped in the cell membrane. In this condition, the cells were stretched locally between the attachment site of the beads and adhesion plaques beneath the leading edge, which was formed in a direction away from the traction. It was proved statistically that such cells tended to locomote away from the magnet at the 0.1% significance level with Hotelling9s T2-test. In contrast, the mesodermal cells free of the artificial traction in three kinds of control experiments did not show such a preference in the direction of locomotion. These results proved that migratory cells tended to move in the direction away from the tractive force parallel to the substratum, suggesting that advancement of a leading lamella is accelerated when it is stretched along the direction of projection by a mechanical force of sufficient strength. Implication of this finding to the mechanism of cell locomotion will be discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    13
    Citations
    NaN
    KQI
    []