Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles

2017 
Abstract Plasmonic anisotropic nanoparticles possess a number of hot spots on their surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the nanostructures. In this paper, we explore different plasmonic nanostructures, including anisotropic gold nanostars (AuNSts) and spherical gold nanoparticles, in surface-enhanced infrared absorption spectroscopy (SEIRAS) in an attenuated total reflection (ATR) configuration. In our experiments, we observed up to 10-times enhancement of the infrared (IR) absorption of thioglycolic acid (TGA) and up to 2-times enhancement of signals for bovine serum albumin (BSA) protein on plasmonic nanostructure-based films deposited on a silicon (Si) internal reflection element (IRE) compared to bare Si IRE. The dependence of the observed enhancement on the amount of AuNSts present at the surface of the IRE has been demonstrated. Quantitative studies with both, TGA and BSA were performed, observing that the SEIRA signal can be correlated to the concentration of analyte molecules present within the evanescent field. The calibration curves in the presence of the AuNSts showed enhanced sensitivity as compared with the bare Si IRE. We finally compare efficiencies of anisotropic AuNSts and spherical citrate-capped and “bare” laser-synthesized gold nanoparticles as SEIRAS substrates for the detection of TGA and BSA. The signal obtained from AuNSts was at least 2 times higher for TGA molecules in comparison with spherical gold nanoparticles, which was explained by a more efficient generation of hot spots on anisotropic surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the AuNSts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    26
    Citations
    NaN
    KQI
    []