Hysteretic Genetic Circuit for Detection of ProteasomalDegradation in Mammalian Cells

2019 
Synthetic hysteretic mammalian gene circuits generating sustained cellular responses to transient perturbations provide important tools to investigate complex cellular behaviors and reprogram cells for a variety of applications, ranging from protein production to cell fate decisions. The design rules of synthetic gene circuits with controlled hysteretic behaviors, however, remain uncharacterized. To identify the criteria for achieving predictable control of hysteresis, we built a genetic circuit for detection of proteasomal degradation (Hys-Deg). The Hys-Deg circuit is based on a tetracycline-controlled transactivator (tTA) variant engineered to interface with the ubiquitin proteasome system (UPS). The tTA variant activates its own expression, generating a positive feedback loop that is triggered by expression of another tTA gene that is constitutively regulated. Guided by predictive modeling, we characterized the hysteretic response of the Hys-Deg circuit. We demonstrated that control of the hysteretic r...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    3
    Citations
    NaN
    KQI
    []