Visualization of the interfacial decomposition of composite cathodes in argyrodite based all-solid-state batteries using time-of-flight secondary ion mass spectrometry

2019 
All-solid-state lithium-ion batteries (ASSBs) are expected to represent a future alternative compared to conventional lithium-ion batteries with liquid electrolytes (LIBs). The excellent performance of today’s LIBs relies to a large extent on the development of liquid electrolytes that form stable, or at least slowly degrading, interfaces (interphases) with both anodes and cathodes. This has not yet been achieved in ASSBs, and degradation of anode and cathode interfaces of solid electrolytes (SE) is one of the key issues to be solved. Unlike investigations of liquid/solid interfaces, the degradation of interfaces between the solid electrodes and the SE is challenging since (i) solid/solid interfaces are less easily accessed analytically, (ii) interface compounds may contribute only in very low concentrations to spectroscopic or spectrometric data, and (iii) a high spatial resolution is required to determine the local component distribution. Typically, solid/solid interface investigations are primarily bas...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    102
    Citations
    NaN
    KQI
    []