Rethinking the correction for absorbing aerosols in thesatellite-based surface UV products

2021 
Abstract. Satellite estimates of surface UV irradiance have been available since 1978 from TOMS UV spectrometer and continued with significantly improved ground resolution using Ozone Monitoring Instrument (OMI 2004-current) and Sentinel 5 Precursor (S5P 2017-current). The surface UV retrieval algorithm remains essentially the same: it first estimates the clear-sky UV irradiance based on measured ozone and then accounts for the attenuation by clouds and aerosols applying two consecutive correction factors. When estimating the total aerosol effect in surface UV irradiance, there are two major classes of aerosols to be considered: 1) aerosols that only scatter UV radiation and 2) aerosols that both scatter and absorb UV radiation. The former effect is implicitly included in the measured effective Lambertian Equivalent scene reflectivity (LER), so the scattering aerosol influence is estimated through cloud correction factor. Aerosols that absorb UV radiation attenuate the surface UV radiation more strongly than non-absorbing aerosols of the same extinction optical depth (AOD). Moreover, since these aerosols also attenuate the outgoing satellite-measured radiance, the cloud correction factor that treats these aerosols as purely scattering underestimates their AOD causing underestimation of LER and overestimation of surface UV irradiance. Therefore, for correction of aerosol absorption additional information is needed, such as the UV absorbing Aerosol Index (UVAI) or a model-based monthly climatology of aerosol absorption optical depth (AAOD). A correction for absorbing aerosols was proposed almost a decade ago and later implemented in the operational OMI and TROPOMI UV algorithms. In this study, however, we show that there is still room for an improvement to better account for the solar zenith angle dependence and non-linearity in the absorbing aerosol attenuation and as a result we propose an improved correction scheme. There are two main differences between the new proposed correction and the one that is currently operational in OMI and TROPOMI UV-algorithms. First, the currently operational correction for absorbing aerosols is a function of AAOD only, while the new correction takes additionally the solar zenith angle dependence into account. Second, the 2nd order polynomial of the new correction takes better into account the non-linearity in the correction as a function of AAOD, if compared to the currently operational one, and thus better describes the effect by absorbing aerosols over larger range of AAOD. To illustrate the potential impact of the new correction in the global UV estimates, we applied the current and new proposed correction for global fields of AAOD from the aerosol climatology currently used in OMI UV algorithm, showing a typical differences of ±5 %. This new correction is easy to implement operationally using information of solar zenith angle and existing AAOD climatology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []