Modeling energy deposition and cellular radiation effects in human bronchial epithelium by radon progeny alpha particles.

2000 
Energy deposition and cellular radiation effects arising from the interaction of single {sup 218}Po and {sup 214}Po alpha particles with basal and secretory cell nuclei were simulated for different target cell depths in the bronchial epithelium of human airway generations 2, 4, 6, and 10. To relate the random chord lengths of alpha particle tracks through spherical cell nuclei to the resulting biological endpoints, probabilities per unit track length for different cellular radiation effects as functions of LET were derived from in vitro experiments. The radiobiological data employed in the present study were inactivation and mutation (mutant frequency at the HPRT gen) in V70 Chinese hamster cells and inactivation and transformation in C3H 10T1/2 cells. Based on computed LET spectra and relative frequencies of target cells, probabilities for transformation, mutation, and cell killing in basal and secretory cells were computed for a lifetime exposure of 20 WLM. While predicted transformation probabilities were about two orders of magnitude higher than mutation probabilities, they were still about two orders of magnitude lower than inactivation probabilities. Furthermore, transformation probabilities for basal cells are generally higher than those for secretory cells, and {sup 214}Po alpha particles are primarily responsible for transformation in bronchial targetmore » cells.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    26
    Citations
    NaN
    KQI
    []