The Hot and Dynamic Birth of Massive Stars from the ngVLA Perspective

2021 
The Next Generation Very Large Array (ngVLA) has excellent capabilities to unveil various dynamical and chemical processes in massive star formation at the unexplored innermost regions. Based on the recent observations of ALMA/VLA as well as theoretical predictions, we propose several intriguing topics in massive star formation from the perspective of the ngVLA. In the disk scale of $\lesssim$ 100 au around massive protostars, dust grains are expected to be destructed/sublimated because the physical conditions of temperature, shocks, and radiation are much more intense than those in the envelopes, which are typically observed as hot cores. The high sensitivity and resolution of the ngVLA will enable us to detect the gaseous refractories released by dust destruction, e.g., SiO, NaCl, and AlO, which trace disk kinematics and give new insights into the metallic elements in star-forming regions, i.e., astromineralogy. The multi-epoch survey by the ngVLA will provide demographics of forming massive multiples with separations of $\lesssim$ 10 au with their proper motion. Combining with observations of refractory molecular lines and hydrogen recombination lines, we can reproduce the three-dimensional orbital motions of massive proto-binaries. Moreover, the 1-mas resolution of the ngVLA could possibly take the first-ever picture of the photospheric surface of an accreting protostar, if it is bloated to the au scale by the high accretion rates of mass and thermal energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []