language-icon Old Web
English
Sign In

Quantum Light on Demand

2018 
The far field radiation pattern of three, dipole coupled, two level atoms is shown to yield sub and super radiant behavior, with the nature of light quanta controlled by the underlying quantum correlations. Superradiance is found to faithfully reflect the monogamy of quantum correlation and is robust against thermal effects. It persists at finite temperature with reduced intensity, even in the absence of entanglement but with non-zero quantum discord. The intensity of emitted radiation is highly focused and anisotropic in one phase and completely uniform in another, with the two phases separated by a cross over. Radiation intensity is shown to exhibit periodic variation from super to sub-radiant behavior, as a function of inter atomic spacing and observation angle, which persists up to a significantly high temperature. The precise effects of transition frequency and inter-dipole spacing on the angular spread and variations of the intensity in the uniform and non-uniform regimes are explicitly demonstrated at finite temperature. Photon-photon correlation is shown to exhibit sub and super Poissonian statistics in a parametrically controlled manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    2
    Citations
    NaN
    KQI
    []