A molecular atlas of proximal airway identifies subsets of known airway cell types revealing details of the unique molecular pathogenesis of Cystic Fibrosis
2020
Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts in excess of 70,000 people globally. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most significant determinant of morbidity and mortality. In this study we report results from a multi-institute consortium in which single cell transcriptomics were applied to define disease-related changes to the proximal airway of CF donors (n=19) undergoing transplantation for end-stage lung disease compared to the proximal airway of previously healthy lung donors (n=19). We found that all major airway epithelial cell types were conserved between control and CF donors. Disease-dependent differences were observed, including an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subtypes coupled with an unexpected decrease in cycling basal cells. This study developed a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
1
Citations
NaN
KQI