Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis

2019 
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from {"type":"entrez-geo","attrs":{"text":"GSE26712","term_id":"26712"}}GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15, KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as potential targets in ovarian cancer treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []