Properties of InGaN/GaN MQW LEDs grown by MOCVD with and without hydrogen carrier gas

2018 
Abstract Two types of 3-period In 14 Ga 86 N/GaN multiple quantum well light-emitting diodes (LEDs) were studied, differing only in the conditions under which their p-GaN layers were grown by metalorganic chemical vapor deposition. The p-GaN of one type of LED was grown with a carrier gas mixture of N 2 /H 2 . A carrier gas of only N 2 was used to grow the p-GaN of the second type of LED at a relatively elevated temperature, making the entire structure grown in pure N 2 alone. Subsequently the growth, fabrication and characterization of each type of LED were methodologically studied. Based on the XRD analysis, the thickness of the well, barrier and In composition of the LED structures were estimated to be 2.5 nm, 8.5 nm and x = 14%, respectively. Finally, the electroluminescence output of these devices was evaluated at a current of 20 mA at room temperature. It was observed that the LED structure grown with nitrogen-only carrier gas had approximately 25% superior electroluminescence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []