Modelling the Diffusion Coefficients of Dilute Gaseous Solutes in Hydrocarbon Liquids

2021 
In this work, we present a model, based on rough hard-sphere theory, for the tracer diffusion coefficients of gaseous solutes in non-polar liquids. This work extends an earlier model developed specifically for carbon dioxide in hydrocarbon liquids and establishes a general correlation for gaseous solutes in non-polar liquids. The solutes considered were light hydrocarbons, carbon dioxide, nitrogen and argon, while the solvents were all hydrocarbon liquids. Application of the model requires knowledge of the temperature-dependent molar core volumes of the solute and solvent, which can be determined from pure-component viscosity data, and a temperature-independent roughness factor which can be determined from a single diffusion coefficient measurement in the system of interest. The new model was found to correlate the experimental data with an average absolute relative deviation of 2.7 %. The model also successfully represents computer-simulation data for tracer diffusion coefficients of hard-sphere mixtures and reduces to the expected form for self-diffusion when the solute and solvent become identical.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []