Flexible scheduling and control of bandwidth and in-transit services for end-to-end application workflows

2014 
Emerging end-to-end scientific applications that integrate high-end experiments and instruments with large scale simulations and end-user displays, require complex couplings and data sharing between distributed components involving large data volumes and varying hard (in-time data delivery) and soft (in-transit processing) quality of service (QoS) requirements. As a result, efficient data transport is a key requirement of such workflows. In this paper, we leverage software-defined networking (SDN) to address issues of data transport service control and resource provisioning to meet varying QoS requirements from multiple coupled workflows sharing the same service medium. Specifically, we present a flexible control and a disciplined resource scheduling approach for data transport services of science networks. Furthermore, we emulate an SDN testbed on top of the FutureGrid virtualized testbed and use it to evaluate our approach for a realistic scientific workflow. Our results show that SDN-based control and resource scheduling based on simple intuitive models can meet the coupling requirement with high resource utilization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []