Low Gilbert damping and high thermal stability of Ru-seeded L10-phase FePd perpendicular magnetic thin films at elevated temperatures

2020 
Bulk perpendicular magnetic anisotropy materials are proposed to be a promising candidate for next-generation ultrahigh density and ultralow energy-consumption spintronic devices. In this work, we experimentally investigate the structure, thermal stability, and magnetic properties of FePd thin films seeded by an Ru layer. An fcc-phase Ru layer induces the highly-ordered L10-phase FePd thin films with perpendicular magnetic anisotropy (Ku ∼10.1 Merg/cm3). The thermal stability of FePd samples is then studied through the annealing process. It is found that a Ku ∼6.8 Merg/cm3 can be obtained with an annealing temperature of 500 °C. In addition, the Gilbert damping constant α, an important parameter for switching current density, is determined as a function of the testing temperature. We observe that α increases from 0.006 to 0.009 for the as-deposited FePd sample and from 0.006 to 0.012 for the 400 °C-annealed FePd sample as the testing temperature changes from 25 °C to 150 °C. These results suggest that Ru-seeded FePd provides great potential in scaling perpendicular magnetic tunnel junctions below 10 nm for applications in ultralow energy-consumption spintronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []