Effect of excess extracellular glutamate on dendrite growth from cerebral cortical neurons at 3 days in vitro: Involvement of NMDA receptors.

2003 
Glutamate is an important regulator of dendrite development; however, during cerebral ischemia, massive glutamate release can lead to neurodegeneration and death. An early consequence of glutamate excitotoxicity is dendrite injury, which often precedes cell death. We examined the effect of glutamate on dendrite growth from embryonic day 18 (E18) mouse cortical neurons grown for 3 days in vitro (DIV) and immunolabeled with anti-microtubule-associated protein (MAP)2 and anti-neurofilament (NF)-H, to identify dendrites and axons, respectively. Cortical neurons exposed to excess extracellular glutamate (100 μM) displayed reduced dendrite growth, which occurred in the absence of cell death. This effect was mimicked by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and blocked by the ionotropic glutamate receptor antagonist kynurenic acid and the NMDA receptor-specific antagonist MK-801. The non-NMDA receptor agonist AMPA, however, did not affect process growth. Neither NMDA nor AMPA influenced neuron survival. Immunolabeling and Western blot analysis of NMDA receptors using antibodies against the NR1 subunit, demonstrated that immature cortical neurons used in this study, express NMDA receptors. These results suggest that excess glutamate decreases dendrite growth through a mechanism resulting from NMDA receptor subclass activation. Furthermore, these data support the possibility that excess glutamate activation of NMDA receptors mediate both cell death in mature neurons and the inhibitory effect of excess glutamate on dendrite growth in immature neurons or in the absence of cell death. © 2003 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    37
    Citations
    NaN
    KQI
    []