A Low-Power 5-Gb/s Current-Mode LVDS Output Driver and Receiver with Active Termination

2012 
In this work, a novel circuit topology for a Low-Voltage Differential Signaling (LVDS) output driver with reduced power consumption is proposed. Also, a low-signal current version of the LVDS driver working with lower supply voltage is proposed along with a compatible differential current-mode receiver. Both the drivers and the receiver feature active-terminated ports that eliminate the need for a dedicated passive terminator for matching. An asymmetric impedance network on the output side of the driver selectively eliminates any reflections coming from the channel while providing a high output impedance to the outgoing signal. For a target signal swing at the receiver input, the proposed termination scheme helps to reduce the driver signal current to up to a third of the current required by a conventional LVDS driver using a passive termination at the output. The asymmetric impedance network consists of a scaled-down replica driver that drives a common drain stage acting as the load for the main driver. The proposed driver topology meeting all LVDS specifications has been implemented in 3.3-V thick-gate CMOS technology. Simulation results show an achievable data rate of 5 Gb/s while transmitting over a 7.5-in FR4 PCB backplane trace for a target BER of 10−15, with power consumption equal to 17.8 mW, which is 25% less than a conventional LVDS driver with passive source end termination producing the same voltage swing at the receiver input. The low-current version of the driver has been implemented in 0.18-μm 1.8-V digital CMOS technology and shows similar performance over the same channel with a power consumption of 4.5 mW.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    4
    Citations
    NaN
    KQI
    []