language-icon Old Web
English
Sign In

Notes on certain analytic functions

2019 
Let A ( n ) " role="presentation">  ( n ) A ( n ) \mathcal{A}(n) be the class of functions f ( z ) = a n z n + a n + 1 z n + 1 + ⋯ ( n ∈ N ) , " role="presentation"> f ( z ) = a n z n + a n + 1 z n + 1 + ⋯ ( n ∈ ℕ ) , f ( z ) = a n z n + a n + 1 z n + 1 + ⋯ ( n ∈ N ) , f(z)=a_nz^n + a_{n+1}z^{n+1}+\cdots (n\in \mathbb{N}), which are analytic in the open unit disk U " role="presentation"> ? U \mathbb{U} , where a n ≠ 0 " role="presentation"> a n ≠ 0 a n ≠ 0 a_n \neq 0 . For f ( z ) ∈ A ( n ) " role="presentation"> f ( z ) ∈  ( n ) f ( z ) ∈ A ( n ) f(z)\in \mathcal{A}(n) , Miller and Mocanu in 1978 showed a very interesting result for f ( z ) " role="presentation"> f ( z ) f ( z ) f(z) . Applying the result due to Miller and Mocanu, we would like to consider some new results for such functions. Our results in this paper are generalizations for results by Nunokawa in 1992.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []