RAB5C, SYNJ1, and RNF19B promote male ankylosing spondylitis by regulating immune cell infiltration.
2021
Background This study aimed to identify the key genes related to male ankylosing spondylitis (AS) and to analyze the role of immune cell infiltration in the pathological process of this disease. Methods The AS dataset was downloaded from the Gene Expression Omnibus (GEO) public database, and the data of male healthy controls (M_HC) and male AS patients (M_AS) were extracted. R software was used to identify differentially expressed genes (DEGs). Functional and pathway enrichment analysis of the DEGs was performed. A protein-protein interaction (PPI) network was constructed, and the hub genes were screened out. All expression profile data were analyzed by weighted correlation network analysis (WGCNA) to screen out the hub genes, which were then intersected with the hub genes from the PPI network to obtain the key genes. Finally, the difference in immune cell infiltration in the two sets of samples was evaluated with CIBERSORT, and the correlation between the key genes and infiltrating immune cells was analyzed. Results A total of 689 DEGs were obtained, of which 395 genes were up-regulated and 294 genes were down-regulated. Functional and pathway enrichment analysis showed that DEGs were mainly enriched in pathways related to immune response. Based on the PPI analysis, five clusters with high scores were selected. Through WGCNA, 14 gene modules were obtained. The green module with the highest correlation was selected and intersected with the cluster previously obtained to obtain three key genes, RAB5C, SYNJ1, and RNF19B. Immune infiltration analysis found that monocytes and gamma delta T cells may be involved in the process of AS. Also, RAB5C, SYNJ1, and RNF19B are all related to increased levels of monocytes and macrophages. Conclusions RAB5C, SYNJ1, and RNF19B are key DEGs expressed in M_AS and may play a role in the disease's occurrence and development through regulating immune cell functions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
53
References
0
Citations
NaN
KQI