A photometric study of globular clusters observed by the APOGEE survey
2018
In this paper we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study we employ precise ground based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope, literature abundances of Na and O, and APOGEE survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the CU,B,I -V pseudo-CMD and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the RGB in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anti-correlations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e., bimodal vs. continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal vs. continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HST photometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second generation HB stars in M5, and five second generation AGB stars in M92, which is the most metal-poor cluster to date in which second generation AGB stars have been observed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
105
References
8
Citations
NaN
KQI