A microfluidic flow-converter based on a double-chamber planar micropump

2009 
A microfluidic flow-converter that transforms an oscillatory flow into a steady-like flow in a reciprocating-type pumping device is successfully developed in this study. The flow quality at the outlet is found to be significantly improved. The present micro-device is composed of two single-chamber PZT micropumps in parallel arrangement and can be fabricated using simple micro-electro-mechanical-system (MEMS) techniques. Based on the concept of the electronic bridge converter, the flow rectification is supported by four passive planar valves. Two operation modes, in-phase and anti-phase, were used to test the performance of the present device. In addition, the flow characteristics at the outlet were examined by an externally triggered micro-PIV system. The results reveal that the current flow-converter provided both high volume and smoothly continuous flow rates at the outlet when it was in anti-phase mode. Moreover, the volume flow rate was linearly proportional to the excitation frequency within a specific frequency regime. This indicates that the flow-converter was easily operated and controlled. The present microfluidic flow-converter has great potential for integration into future portable micro- or bio-fluidic systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    8
    Citations
    NaN
    KQI
    []