Structure-based identification and neutralization mechanism of tyrosine sulfate mimetics that inhibit HIV-1 entry.
2011
Tyrosine sulfate-mediated interactions play an important role in HIV-1 entry. After engaging the CD4 receptor at the cell surface, the HIV-1 gp120 glycoprotein binds to the CCR5 co-receptor via an interaction that requires two tyrosine sulfates, at positions 10 and 14 in the CCR5-N terminus. Building on previous structure determinations of this interaction, here we report the targeting of these tyrosine sulfate binding sites for drug design through in silico screening of small molecule libraries, identification of lead compounds, and characterization of biological activity. A class of tyrosine sulfate-mimicking small molecules containing a “phenyl sulfonate-linker-aromatic” motif was identified that specifically inhibited binding of gp120 to the CCR5-N terminus as well as to sulfated antibodies that recognize the co-receptor binding region on gp120. The most potent of these compounds bound gp120 with low micromolar affinity and its CD4-induced conformation with KD's as tight as ∼50 nM. Neutralization expe...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
28
Citations
NaN
KQI