Gas-Phase Photoelectron Spectroscopic and Theoretical Studies of 1,2-Dichalcogenins: Ionization Energies, Orbital Assignments, and an Explanation of Their Color

2000 
Gas-phase photoelectron spectroscopy and theoretical calculations are used to study the electronic structure of 1,2-dichalcogenins. Photoelectron spectra are reported for 1,2-dithiin, 3,6-dimethyl-1,2-dithiin, 3,6-diisopropyl-1,2-dithiin, 3,6-di-tert-butyl-1,2-dithiin, 2-selenathiin, 1,2-diselenin, 3,6-dimethyl-1,2-diselenin, and 3,6-di-tert-butyl-1,2-diselenin and are assigned on the basis of (a) trends in ionization cross sections as the ionization photon energy is varied and (b) shifts of the ionizations as chemical substitutions are made. The calculated properties of 1,2-dithiin and 3,6-dimethyl-1,2-dithiin are compared to experimental results. The first four filled frontier valence orbitals are associated with orbitals that can be described as being primarily carbon π and chalcogen lone pair in character. Comparison of spectra collected with He I, He II, and Ne I ionization sources for each compound indicate that there is a large degree of mixing of chalcogen and carbon character through most of the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    19
    Citations
    NaN
    KQI
    []