On the permeability of colloidal gels

2019 
We reexamine and refine analytical theories for permeability in colloidal networks, with particular focus on constants and identification of approximations. The new theories are compared against numerical simulations of Stokes flow through the networks and reveal nearly quantitative power-law predictions for both pore size and permeability at low volume fractions, with systematic deviations observed only at high volume fractions. Comparison with two previously published experimental data sets yields mixed results: in one case, very good agreement is found, while in the other, only the scaling is correctly predicted. In fractal gel networks, the permeability is commonly modeled as a power-law function of volume fraction, with the fractal dimension of the network determining the power-law exponent. To quantitatively probe the influence of gel structure on permeability, we investigate this relation in structures generated by diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []