Characterization of Tailor-Made Copolymers of Oligo(ethylene glycol) Methyl Ether Methacrylate and N,N-Dimethylaminoethyl Methacrylate as Nonviral Gene Transfer Agents: Influence of Macromolecular Structure on Gene Vector Particle Properties and Transfection Efficiency

2010 
Oligo(ethylene glycol) methyl ether methacrylates (OEGMA) of various chain lengths (i.e., 9, 23, or 45 EG units) and N,N-dimethylaminoethyl methacrylate (DMAEMA) were copolymerized by atom transfer radical polymerization (ATRP), yielding well-defined P(DMAEMA-co-OEGMA) copolymers with increasing OEGMA molar fractions (FOEGMA) but a comparable degree of polymerization (DP ∼ 120). Increase of both FOEGMA and OEGMA chain lengths correlated inversely with gene vector size, morphology, and zeta potential. P(DMAEMA-co-OEGMA) copolymers prevented gene vector aggregation at high plasmid DNA (pDNA) concentrations in isotonic solution and did not induce cytotoxicity even at high concentrations. Transfection efficiency of the most efficient P(DMAEMA-co-OEGMA) copolymers was found to be >10-fold lower compared with branched polyethylenimine (PEI) 25 kDa. Although OEGMA copolymerization largely reduced gene vector binding with the cell surface, cellular internalization of the bound complexes was less affected. These o...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    54
    Citations
    NaN
    KQI
    []