Fatigue Loading Effect in Custom-Made All-on-4 Implants System: A 3D Finite Elements Analysis

2021 
Abstract Objectives This study aims to evaluate the fatigue stress around custom-made all-on-4 implants system to find out which type of implants have a better performance under different graded multidirectional occlusal forces. Material and methods 3D normal and implanted models simulating the “All-on-4” concept were created and analyzed under three different conditions of occlusal loadings. Two types of static and fatigue were applied. Stress distribution was analyzed based on von Mises and Goodman theories in ANSYS environment in addition to the safety factor. Statistical tests were performed to assess the significance of the results as well as the reproducibility of the results. Results The results showed stress increasing reaching a value of 48%, 29% in tilted implants compared to vertical implants and normal cases respectively. In contrast, tilted implants appeared to be less stable (safety factor may reach 0.7) and they may fail during the application of occlusal forces. The safety factor of cortical bone decreased by about 91% in the implanted model compared to the normal model, indicating a higher possibility of bone remodeling around the bone. Conclusion The orientation and position of occlusal forces had an important influence on stress distribution between the implant and the surrounding bone, and fatigue loading caused greater stresses in comparison with static loading. Lower amounts of stress were found in the vertical implants, ensuring a higher safety factor and a longer clinical service. In contrast, the critical safety factor values are observed in tilted implants, which may fail under the influence of applied occlusal forces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []