A New Method for Designing Lightweight S-Boxes With High Differential and Linear Branch Numbers, and its Application

2021 
Bit permutations are efficient linear functions often used for lightweight cipher designs. However, they have low diffusion effects, compared to word-oriented binary and maximum distance separable (MDS) matrices. Thus, the security of bit permutation-based ciphers is significantly affected by differential and linear branch numbers (DBN and LBN) of nonlinear functions. In this paper, we introduce a widely applicable method for constructing S-boxes with high DBN and LBN. Our method exploits constructions of S-boxes from smaller S-boxes and it derives/proves the required conditions for smaller S-boxes so that the DBN and LBN of the constructed S-boxes are at least 3. These conditions enable us to significantly reduce the search space required to create such S-boxes. Using the unbalanced- Bridge and unbalanced- MISTY structures, we develop a variety of new lightweight S-boxes that provide not only both DBN and LBN of at least 3 but also efficient bitsliced implementations including at most 11 nonlinear bitwise operations. The new S-boxes are the first that exhibit these characteristics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []