Adenosine and Glutamate Signaling in Neuron–Glial Interactions: Implications in Alcoholism and Sleep Disorders

2012 
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. Especially, astrocytes are essential for neuronal activity in the brain. Astrocytes actively participate in synapse formation and brain information processing by releasing or uptaking gliotransmitters such as glutamate, D-serine, adenosine 5′-triphosphate (ATP) and adenosine. In the central nervous system, adenosine plays an important role in regulating neuronal activity as well as in controlling other neurotransmitter systems such as GABA, glutamate and dopamine. Ethanol increases extracellular adenosine levels, which regulates the ataxic and hypnotic/sedative (somnogenic) effects of ethanol. Adenosine signaling is also involved in the homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions, which regulates the effect of ethanol and sleep. Adenosine transporters or astrocytic SNARE-mediated transmitter release regulates extracellular or synaptic adenosine levels. Adenosine then exerts its function through several adenosine receptors and regulates glutamate levels in the brain. This review presents novel findings on how neuron-glial interactions, particularly adenosinergic signaling and glutamate uptake activity involving glutamate transporter 1 (GLT1), are implicated in alcoholism and sleep disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    110
    References
    56
    Citations
    NaN
    KQI
    []