Molecular aspects of insect-plant associations

1987 
The Perception of Plant Allelochemicals that Inhibit Feeding.- 1. Introduction.- 2. Insect Feeding Behavior.- 2.1. Generalized Sequence.- 2.2. Neuroethological Approach.- 3. The Contact Chemoreceptive System.- 3.1. Structure of Chemoreceptive Sensilla.- 3.2. Function of Chemosensilla.- 3.2.1. Contact Chemosensory Systems.- 3.2.2. Sensitivity of Contact Chemosensory Cells.- 3.2.3. Specificity of Contact Chemosensory Cells.- 3.2.4. Specificity of Chemoreceptor Sites.- 4. Inhibitory Plant Allelochemicals.- 4.1. Major Classes of Allelochemicals.- 4.2. Modes of Action on Chemosensory Cells.- 4.2.1. Potential Types of Action.- 4.2.2. Deterrent Chemosensory Cells.- 4.2.3. Effects of Alkaloids.- 4.2.4. Effects of Terpenes.- 4.2.5. Effects of Other Allelochemicals.- 4.3. Modes of Action on Other Excitable Cells.- 5. Summary.- 6. Acknowledgement.- 7. References.- Allelochemicals and Alimentary Ecology: Heterosis in a Hybrid Zone?.- 1. Introduction.- 1.1. A Case Study of Insect-Plant Interactions. The Insects.- 1.2. Estimation of Growth Characteristics.- 1.3. The Plant Allelochemicals.- 2. Hybridization Studies and Experimental Approach.- 3. Results.- 4. Discussion.- 5. Summary.- 6. Acknowledgement.- 7. References.- Enzymes Involved in the Metabolism of Plant Allelochemicals.- 1. Introduction.- 2. Cytochrome P-450.- 2.1. Occurrence.- 2.1.1. Occurrence in Species.- 2.1.2. Age-Related Distribution of Activity.- 2.1.3. Tissue Distribution and Subcellular Localization.- 2.2. Biochemical Characteristics of Microsomal Cytochrome P-450.- 2.3. Apparent Reactions Catalyzed by Cytochrome P-450.- 2.3.1. CH-Hydroxylations.- 2.3.2. ?-Bond Oxygenations.- 2.3.3. Oxygenation at an Unshared Electron Pair.- 2.4. Measurements of Cytochrome P-450-catalyzed Reactions in Insects.- 2.5. Inhibition of Cytochrome P-450.- 2.5.1. Endogenous Inhibitors.- 2.5.2. Synergists as Inhibitors.- 2.5.3. Plant Allelochemicals as Inhibitors.- 2.6. Induction of Cytochrome P-450.- 2.7. Regulation of Cytochrome P-450 Activity.- 3. Other Biological Oxidations.- 3.1. FAD-Monooxygenase.- 3.2. Dehydrogenases.- 4. Biological Reductions.- 4.1. Nitro-, Azo-, and Tertiary Amine Oxide Reduction.- 4.2. Carbonyl Reductases.- 5. Hydrolases.- 5.1. Esterases.- 5.1.1. Carboxylesterases.- 5.2. Glycosidases.- 5.3. S-Glycosyl Hydrolases.- 5.4. Ether Hydrolases.- 5.5. Other Hydrolases.- 6. Group Transfer Enzymes.- 6.1. Glutathione Transferases.- 6.2. Hexose Transferases.- 6.3. Amino Acid Conjugations.- 6.4. N-Acetylation.- 6.5. Phosphate Conjugation.- 6.6. Sulfotransferases.- 6.7. Thiosulfate Sulfur Transferase.- 7. Summary.- 8. Acknowledegment.- 9. References.- Consequences of Induction of Foreign Compound-Metabolizing Enzymes in Insects.- 1. Introduction.- 2. Induction of Cytochrome P-450-Dependent Monooxygenases.- 3. Induction of Glutathione Transferases.- 4. Induction of Esterases.- 5. Induction of Epoxide Hydrolases.- 6. Consequences of Enzyme Induction.- 6.1. Toxicological Implications.- 6.2. Ecological Implications.- 7. Summary.- 8. Acknowledgement.- 9. References.- Adaptive Divergence of Chewing and Sucking Arthropods to Plant Allelochemicals.- 1. Introduction.- 2. Plant Resistance to Chewing and Sucking Insects.- 3. Susceptibility Differences to Toxicants.- 3.1. Susceptibility to Synthetic Toxicants.- 3.2. Susceptibility to Naturally-Derived Toxicants.- 4. The Aphid as a Model Phytophage of Phloem Chemicals.- 4.1. Phloem Toxicology.- 4.2. Chemical Ecology of Aphids.- 5. Adaptive Detoxification.- 5.1. Sequestration.- 5.2. Excretion.- 5.3. Metabolism of Plant Allelochemicals.- 5.4. Metabolism of Pesticides and Other Synthetic Toxicants.- 5.5. Alternative Detoxification Strategies.- 6. Target Site Selectivities.- 7. Summary.- 8. Acknowledgement.- 9. References.- Fate of Ingested Plant Allelochemicals in Herbivorous Insects.- 1. Introduction.- 2. Terpenes.- 2.1. Monoterpenes.- 2.1.1. Bark Beetle Pheromones.- 2.1.2. Pyrethrins.- 2.1.3. Iridoid Glycosides.- 2.2. Sesquiterpenes.- 2.2.1. Juvenile Hormones.- 2.2.2. Sesquiterpene Antifeedants.- 2.3. Diterpenes.- 2.4. Triterpenes.- 3. Steroids.- 3.1. Phytosteroids.- 3.2. Ecdysones.- 3.3. Cardenolides.- 4. Phenylpropanoids.- 4.1. Precocenes.- 4.2. Furanocoumarins.- 4.3. Phenolics.- 5. Flavonoids.- 6. Amino acids.- 7. Cyanogenic Glycosides.- 8. Glucosinolates.- 9. Alkaloids.- 9.1. Tobacco Alkaloids.- 9.2. Pyrrolizidine Alkaloids.- 10. Summary.- 11. Acknowledgement.- 12. References.- Target Site Insensitivity in Insect-Plant Interactions.- 1. Introduction.- 2. TSI and Synthetic Insecticides.- 2.1. The Sodium Gate.- 2.2. The Synapse.- 3. TSI in Natural Systems.- 4. Examples of TSI in Insect-Plant Interactions.- 4.1. Cardenolide Insensitivity.- 4.2. Cyanide Insensitivity.- 4.3. Canavanine Insensitivity.- 4.4. Nicotine Insensitivity.- 5. Coevolutionary Consequences of TSI.- 5.1. Consequences for the Insects.- 5.2. Consequences for the Plants.- 6. Summary.- 7. Acknowledgement.- 8. References.- Behavioral Adaptations in Insects to Plant Allelochemicals.- 1. Introduction.- 2. Avoiding Defenses in Time.- 3. Avoiding Defenses in Space.- 4. Mechanisms to Avoid Triggering Defenses.- 5. Overwhelming Plant Defenses.- 6. Blocking Plant Defenses.- 7. The Cost of Avoiding Plant Defenses.- 8. Summary.- 9. Acknowledgement.- 10. References.- Devising Pest Management Tactics Based on Plant Defense Mechanisms, Theoretical and Practical Considerations.- 1. Introduction.- 2. General Strategies to Devising Pest Management Schemes.- 3. Key Processes in Plant-Insect Encounters.- 3.1. Examples from a Model System.- 3.2. A Generalized Model.- 4. Manipulating Plant-Insect Interactions.- 5. Can Pest Management Tactics Bases on Plant Defenses Favor Stability?.- 6. Summary.- 7. Acknowledgement.- 8. References.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    97
    Citations
    NaN
    KQI
    []