Transport and Photoelectric Properties of 2D Silicene/MX2 (M = Mo, W; X = S, Se) Heterostructures

2018 
The transport and photoelectric properties of four two-dimensional (2D) silicene/MX2 (M = Mo, W; X = S, Se) heterostructures have been investigated by employing density functional theory, nonequilibrium Green’s function, and Keldysh nonequilibrium Green’s function methods. The stabilities of silicene (SiE) are obviously improved after being placed on the MX2 (M = Mo, W; X = S, Se) substrates. In particular, the conductivities of SiE/MX2 are enhanced compared with free-standing SiE and MX2. Moreover, the conductivities are increased with the group number of X, i.e., in the order of SiE < SiE/MS2 < SiE/MSe2. An evident current oscillation phenomenon is observed in the SiE/WX2 heterostructures. When a linear light illumination is applied, SiE/MSe2 shows a stronger photoresponse than SiE/MS2. The maximum photoresponse with a value of 9.0a02/photon was obtained for SiE/WSe2. More importantly, SiE/MS2 (M = Mo, W) heterostructures are good candidates for application in designing solar cells owing to the well spa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    6
    Citations
    NaN
    KQI
    []