Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet

2019 
Hydrolyzed polyacrylamide (HPAM) is a polymer that extensively used in chemical industry and hydrocarbon extraction and refinery processes, but suffers a common problem of high-temperature instability. This study improved high-temperature rheological characteristics of HPAM by using novel graphene oxide (GO) nanosheets. Stable GO dispersions in aqueous HPAM were formulated, and their dynamic and viscoelastic behaviors were studied. The results showed that the addition of GO significantly increased the viscosities and high-temperature stability of the base polymer fluid, as well as the elastic properties of the dispersion. Spectral data indicated the formation of covalent linkages and electrostatic hydrogen bonding between the GO and the HPAM functional groups, leading to enhanced stability and viscosity that is beneficial for high-temperature oil recovery. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47582.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    23
    Citations
    NaN
    KQI
    []