Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine

2019 
Background The human gastrointestinal (GI) tract microbiota has been a subject of intense research throughout the 3rd Millennium. Now that a general picture about microbiota composition in health and disease is emerging, questions about factors determining development of microbiotas with specific community structures will be addressed. To this end, usage of murine models for colonization studies remains crucial. Optical in vivo imaging of either bioluminescent or fluorescent bacteria is the basis for non-invasive detection of intestinal colonization of bacteria. Although recent advances in in vivo fluorescence imaging have overcome many limitations encountered in bioluminescent imaging of intestinal bacteria, such as requirement for live cells, high signal attenuation and 2D imaging, the method is still restricted to bacteria for which molecular cloning tools are available.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []