New parametric transducer for resonant detectors: Advances and room temperature test

2008 
We are developing a prototype of cryogenic parametric converter transducer operating at 5 GHz, for the upgrade of the ROG Collaboration resonant G. W. antennas. This device is built on the experience of the Niobe detector (D. G. Blair et al.), with substantial modifications that should let us achieve better stability and sensitivity. The prototype uses as parametric converter a superconducting coaxial cavity with a 50 micron gap (Q 0 = 5 × 10 8 at 1.5K and 100μW RF power dissipation), and a contacless RF coupling for thermal insulation between the 2K stage and the ultra cryogenic (100mK) antenna. The coupler features a constant transmission loss of 0.2dB over a range of displacements of ± 5mm in x, y and z around the nominal operating position with a separation of 8mm between the two halves of the coupler. In this way the large, low frequency swings (0.5 and 17 Hz), of the 2 Tons antenna around its suspension point have no influence on the transducer performance. To test all the components of the transducer and the system performance, a room temperature prototype is installed on the TART (Test Antenna at Room Temperature) facility at the INFN labs. Using critical coupling for the RF cavity input coupler we manage to keep to a minimum the leakage of the drive signal to the first RF amplifier. In this way we avoid degradation of the RF amplifier noise figure (0.6 dB at room temperature) produced by the RF amplifier saturation Experimental results agree with the full analysis of the room temperature detector performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    9
    Citations
    NaN
    KQI
    []