Runtime Performance and Power Optimization of Parallel Disparity Estimation on Many-Core Platforms

2017 
This article investigates the use of many-core systems to execute the disparity estimation algorithm, used in stereo vision applications, as these systems can provide flexibility between performance scaling and power consumption. We present a learning-based runtime management approach that achieves a required performance threshold while minimizing power consumption through dynamic control of frequency and core allocation. Experimental results are obtained from a 61-core Intel Xeon Phi platform for the aforementioned investigation. The same performance can be achieved with an average reduction in power consumption of 27.8% and increased energy efficiency by 30.04% when compared to Dynamic Voltage and Frequency Scaling control alone without runtime management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []