Natural convection in a vertical rectangular enclosure with localized heating and cooling zones

2000 
Experimental and numerical studies of natural convection in a single phase, closed thermosyphon were carried out using a vertical, rectangular enclosure model. Only one vertical plate plays the role of heat transfer surface having 100 mm height and 100 mm width, and others act as the adiabatic wall made of transparent plexi-glass. The heat transfer surface is separated into three horizontal zones with an equal height; top 1/3 and bottom 1/3 of the surface are cooling and heating zones, respectively and intermediate section is an adiabatic zone. Water is used as the working fluid. Variable parameters are distance D between the heat transfer surface and an adiabatic plate opposite to the heat transfer plate, and temperature difference ΔT between heating and cooling zones. By changing both D and ΔT, three regimes of the natural convection flow; quasi-two-dimensional steady, three-dimensional steady and unsteady flows are observed by means of thermo-sensitive liquid crystal powder and numerically simulated very well by solving a set of governing equations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []