Relief from neuropathic pain by blocking of the platelet-activating factor–pain loop

2017 
Neuropathic pain resulting from peripheral neuronal damage is largely resistant to treatment with currently available analgesic drugs. Recently, ATP, lysophosphatidic acid, and platelet-activating factor (PAF) have been reported to play important inductive roles in neuropathic pain. In the present study, we found that pain-like behaviors resulting from partial sciatic nerve ligation (PSL) were largely attenuated by deficiency of lysophosphatidylcholine acyltransferase (LPCAT)2, which is one of the PAF biosynthetic enzymes. By contrast, deficiency of the other PAF biosynthetic enzyme, LPCAT1, did not ameliorate neuropathic pain. With regard to the mechanism of the observed effects, LPCAT2 was detected in wild-type spinal cord microglia, and the absence of LPCAT2 expression precluded spinal PAF expression in LPCAT2-knockout mice. Furthermore, ATP-stimulated PAF biosynthesis in macrophages was decreased by pretreatment with the PAF receptor antagonist ABT-491, indicating the existence of a positive feedback ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    18
    Citations
    NaN
    KQI
    []