One pot preparation of polysulfone-amino functionalized SiO2 nanoparticle ultrafiltration membranes for water purification

2018 
Abstract Highly hydrophilic and fouling resistant polysulfone (PSF) membranes were prepared via one pot methodology by simultaneous phase inversion and nanoparticle formation. Membrane morphology, hydrophilicity, and surface charge behavior were thoroughly characterized by scanning electron microscopy, atomic force microscopy, contact angle, and zeta potential measurements. The SiO 2 -NH 2 nanoparticle distribution in membrane matrix was also investigated by energy dispersive X-ray spectroscopy and transmission electron microscopy. The water purification performances, some of the membranes flux, rejection, and flux recovery, were evaluated by ultrafiltration of bovine serum albumin protein, Congo red, and methylene blue dyes under dead end mode. The fouling tendency of the membrane was evaluated by bovine serum albumin protein adsorption and ultrafiltration. The properties of the prepared membranes could be tuned by varying the SiO 2 -NH 2 concentration. The nanocomposite membranes exhibited superior water permeation, rejection, and antifouling performance as compared to neat PSF membranes. Hydrophilicity was increased due to amino functionalized SiO 2 particles, leading to up to 7-fold increase in water flux and more than 93% protein rejection efficiency with PSF-APTEOS-20 and -10 membranes, respectively. Overall, this work proves an easy and straightforward method for nanocomposite ultrafiltration membrane preparation with good separation and filtration efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    19
    Citations
    NaN
    KQI
    []