Ecotoxicity of bisphenol A to Caenorhabditis elegans by multigenerational exposure and variations of stress response in vivo across generations

2016 
Abstract In order to understand how bisphenol A (BPA) exposure acts on the evolutionary dynamics of populations and changes of stress response across generations, the model animal Caenorhabditis elegans was used to conduct the multigenerational testing. Multiple endpoints at the physiological (growth, reproduction, and locomotion behaviors) and molecular (stress-related gene expressions) levels were examined by multigenerational exposure to low-concentration BPA (0.001–10 μM) across four generations. The results showed that changes of physiological-level effects across four generations varied in magnitude and direction, depending on the exposure concentrations. C. elegans individuals in the first generation grew smaller, moved slower, and produced less offsprings than the controls by BPA exposure. As for each trait tested, the first generation response could be commonly mirrored in the subsequent generations at the highest concentration of 10 μM. However, at lower concentrations, response of parental generation was a relatively poor predictor of the effects on progeny, as acclimation or cumulative damage could occur in the subsequent generations. The integrated gene expression profiles visually illustrated that the tested gene expressions at low concentrations (0.001–0.01 μM) were more obviously changed in both G 1 and G 4 generations, and the G 1 generation showed a much greater degree of increase in stress-related gene expressions than the G 4 generation. The multigenerational toxicity data emphasize the need of considering biological effects over multiple generations to conduct accurate assessment of environmental risks of toxicants on population dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    30
    Citations
    NaN
    KQI
    []