Effect of SiC nanoparticles on in-situ synthesis of SiC whiskers in corundum–mullite–SiC composites obtained by carbothermal reduction

2019 
Abstract Corundum–mullite–SiC composites were synthesised using a carbothermal reduction method. The effects of SiC nanoparticles and sintering temperatures on the phase transformation of the composites and the synthesis of SiC whiskers were studied by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Results indicated that corundum, mullite, and SiC whiskers were produced as final products at 1600–1650 °C. SiC whiskers were formed through the vapor–solid mechanism. The added SiC nanoparticles worked as nucleating agents to facilitate the carbothermal reduction of aluminosilicates and formation of SiC whiskers. The sample with the added SiC nanoparticles exhibited a high yield of β-SiC of 17.1%. Furthermore, the SiC nanoparticles decreased the formation temperature of SiC whiskers from the original 1600 °C to 1500 °C, and the porosity of the composites was increased from 56.7% to 64.7% by increasing the partial pressure of SiO gas. This study provides an insight into the more efficient synthesis of composites with SiC whiskers through the carbothermal reduction of aluminosilicates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    5
    Citations
    NaN
    KQI
    []