Centrally symmetric Cohen--Macaulay complexes and a conjecture of Stanley

2020 
In 1987, Stanley conjectured that if a centrally symmetric Cohen--Macaulay simplicial complex $\Delta$ of dimension $d-1$ satisfies $h_i(\Delta)=\binom{d}{i}$ for some $1\leq i\leq d-1$, then $h_j(\Delta)=\binom{d}{j}$ for all $j\geq i$. This note proves Stanley's conjecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []