Analysis of Nonlinear Buckling of a Long-Span Elliptic Paraboloid Suspended Dome Structure

2013 
The suspended dome structure, which is a new kind of hybrid spatial one composed of the upper single layer latticed shell and the lower cable-strut system, generally has smaller rise-to-span ratio, thus the overall stability is one of the key factors to the design of the structure. The nonlinear buckling behavior of an elliptic paraboloid suspended dome structure of span 110m80m is investigated by introducing geometric nonlinearity, initial geometric imperfection, material elastic-plasticity and half-span distribution of live loads. The study shows that the coefficient of stable bearing capacity usually is not minimal when the initial geometric imperfection configuration is taken as the first order buckling mode. The unsymmetrical loading distribution and the material nonlinearity might have significant effects on the coefficient. The structure is sensitive to the changes of initial geometric imperfection, and the consistent mode imperfection method is not fully applicable to the stability analysis of suspended dome structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    4
    Citations
    NaN
    KQI
    []