Properties of functionalized graphene/room temperature vulcanized silicone rubber composites prepared by an In-situ reduction method

2013 
Functionalized graphene oxide (FGO) was prepared by treating graphene oxide with γ-aminopropyl triethoxysilane (KH-550) before the mixture was dispersed into α, ω-dihydroxy polydimethylsiloxane to get room temperature vulcanized (RTV) silicone rubber composites by solution casting. The cured composites were then reduced with hydrazine hydrate to obtain functionalized graphene (FG)/RTV silicone rubber composites. The structures of FGO and the resultant composites were characterized by atomic force microscopy, FT-IR spectra and X-ray diffraction. KH-550 was found to be grafted onto graphene sheets, leading to an increased interlayer spacing. Significant improvements in thermal and mechanical properties were obtained. Both the FGO/RTV silicone rubber composite contain 1.0 wt% of FGO, and its reduced product showed an increase of one-step weight loss temperature with 61 °C and 133 °C higher than that of pure silicone rubber. Tensile strength and elongation at break of FG/RTV silicone rubber composite (with 0.5 wt% FGO content) increased by 175% and 67%, respectively, compared with those of pure silicone rubber.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    15
    Citations
    NaN
    KQI
    []