Precisely designed isopeptide bridge-crosslinking endows artificial hydrolases with predominant stability and catalytic activity under extreme denaturing conditions

2017 
Enzymes normally lose their activities under extreme conditions due to the dissociation of their active tertiary structure. If an enzyme could maintain its catalytic activity under non physiological or denaturing conditions, it might be used in more applications in the pharmaceutical and chemical industries. Recently, we reported a coiled-coil six-helical bundle (6HB) structure as a scaffold for designing artificial hydrolytic enzymes. Here, intermolecular isopeptide bonds were incorporated to enhance the stability and activity of such biomolecules under denaturing conditions. These isopeptide bridge-tethered 6HB enzymes showed exceptional stability against unfolding and retained or even had increased catalytic activity for a model hydrolysis reaction under thermal and chemical denaturing conditions. Thus, isopeptide bond-tethering represents an efficient route to construct ultrastable artificial hydrolases, with promising potential to maintain biocatalysis under extreme conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []